skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rice, Mallory_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Perturbations in natural systems generally are the combination of multiple interactions among individual stressors. However, methods to interpret the effects of interacting stressors remain challenging and are biased to identifying synergies which are prioritized in conservation. Therefore we conducted a multiple stressor experiment (no stress, single, double, triple) on the coralPocillopora meandrinato evaluate how its microbiome changes compositionally with increasing levels of perturbation. We found that effects of nutrient enrichment, simulated predation, and increased temperature are antagonistic, rather than synergistic or additive, for a variety of microbial community diversity measures. Importantly, high temperature and scarring alone had the greatest effect on changing microbial community composition and diversity. Using differential abundance analysis, we found that the main effects of stressors increased the abundance of opportunistic taxa, and two-way interactions among stressors acted antagonistically on this increase, while three-way interactions acted synergistically. These data suggest that: (1) multiple statistical analyses should be conducted for a complete assessment of microbial community dynamics, (2) for some statistical metrics multiple stressors do not necessarily increase the disruption of microbiomes over single stressors in this coral species, and (3) the observed stressor-induced community dysbiosis is characterized by a proliferation of opportunists rather than a depletion of a proposed coral symbiont of the genusEndozoicomonas. 
    more » « less